翻訳と辞書 |
Computable isomorphism : ウィキペディア英語版 | Computable isomorphism In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the theorem of Myhill,〔Theorem 7.VI, Hartley Rogers, Jr., ''Theory of recursive functions and effective computability''〕 the relation of computable isomorphism coincides with the relation of one-one reduction. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. == References ==
*.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Computable isomorphism」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|